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Computation of turbulent free-surface �ows around
modern ships
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SUMMARY

This paper presents the calculated results for three classes of typical modern ships in modelling of ship-
generated waves. Simulations of turbulent free-surface �ows around ships are performed in a numerical
water tank, based on the FINFLO-RANS SHIP solver developed at Helsinki University of Technology.
The Reynolds-averaged Navier–Stokes (RANS) equations with the arti�cial compressibility and the non-
linear free-surface boundary conditions are discretized by means of a cell-centred �nite-volume scheme.
The convergence performance is improved with the multigrid method. A free surface is tracked using
a moving mesh technology, in which the non-linear free-surface boundary conditions are given on the
actual location of the free surface. Test cases recommended are a container ship, a US Navy combatant
and a tanker. The calculated results are compared with the experimental data available in the literature
in terms of the wave pro�les, wave pattern, and turbulent �ow �elds for two turbulence models,
Chien’s low Reynolds number k–� model and Baldwin–Lomax’s model. Furthermore, the convergence
performance, the grid re�nement study and the e�ect of turbulence models on the waves have been
investigated. Additionally, comparison of two types of the dynamic free-surface boundary conditions is
made. Copyright ? 2003 John Wiley& Sons, Ltd.

KEY WORDS: turbulent non-linear free-surface �ows; modern ships with a transom; a moving mesh
technology; FINFLO-RANS SHIP solver

1. INTRODUCTION

Modelling of turbulent free-surface �ows around a practical structure is of signi�cance in ship
design and ocean engineering using the computational �uids dynamics (CFD) techniques. An
elucidation of such detailed mechanisms is always desirable for research in hydrodynamics. It
is one of the main interests of industry. Recent advance in CFD numerical schemes provides
the possibility for this purpose. Most codes available currently are through resolution of the
mathematical model of the Reynolds–averaged Navier–Stokes (RANS) equations with closure
of a turbulence model. A �ow characteristic may be described by two major independent
parameters: the Reynolds number (Rn) and the Froude number (Fn).
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A free surface associated with the water waves exists owing to the Fn e�ect. Typical example
is �uid–structure interaction problems like ship wavemaking. Dependent on whether the grid
adapts to the shape and position of the free surface, two major approaches widely applied to
the free-surface computations are the so-called interface-tracking method, e.g. a moving mesh
[1–5], and the interface-capturing method, e.g. the volume-of-�uid (VOF) method and the
level set schemes [6–8]. The former is to introduce a mesh that moves over an underlying
�xed Eulerian grid for explicitly tracking a free surface referred as an air–water interface. This
mesh only covers the domain involving the water, where the free surface forms the upper
boundary of the computational domain and is determined as part of the solution. The boundary
conditions at the interface are prescribed on the actual location of the surface. No smearing
of the interface is involved during tracking. As a result, a high order of accuracy may be
preserved. The precise location and geometry of the interface can be given. This approach
can be applied for moving boundary problems due to the fact that desirable information of
the interface is available. In this procedure, the free-surface elevation may be described by
the kinematic free-surface boundary condition (KFSBC); the implementation of the dynamic
free-surface boundary conditions on the exact location of the interface transmits information of
the interface into the grid. The new volumetric grid has to be reconstructed in order to follow
the motion of the interface. Nevertheless, this restricts an application in a large deformation
like the breaking waves unless ad hoc treatments (for example, a wave slope) are employed.
Instead of the use of the deformed mesh, the capturing method is able to deal with the breaking
waves in a �xed mesh, which implicitly prescribes the boundary conditions at the interface in
most cases. But, it requires speci�c advection schemes so that the sharpness of the interface
front is preserved. More accurate prediction is dependent on the grid resolution. Based on the
VOF method, an arbitrary Lagrangian–Eulerian (ALE) approach tends to be more �exible [9].
In this way, the Lagrangian scheme is used to explicitly track the interfacial discontinuity,
while the solution for the bulk �ow is obtained on a �xed Eulerian grid. The following is
mainly to emphasize numerical aspects within the framework of the moving-mesh technique,
some of which are also suitable for the capturing method.
For a turbulent �ow, large number of grid points have to be distributed inside the boundary

layer, while describing the complex features of the geometry. On the other hand, a relatively
�ne mesh is constructed in the outer �ow so that the more detailed structure of the wave
systems can be captured. To merge these features, one approach is to utilize more grids: one
for the free surface and another for the bulk �ow. They are connected to each other with an
interpolation interface [10, 11]. An alternative is to construct one grid but allow multiblock
boundaries, which tends to be one of the most common approaches [2–6].
Generally, two categories, an uncoupled algorithm and a fully coupled algorithm, are clas-

si�ed for the solution of the RANS solvers with interfaces. In the latter case, a global mass
conservation is maintained in that the interface and the bulk RANS evolution are updated
simultaneously by sweeping over the entire domain. Consequently, a full coupling is achieved
[12, 13]. One advantage is that the convergence rate is improved signi�cantly [14]. In the
former case, the bulk RANS �ow is solved iteratively under all the known boundary condi-
tions together with the distribution of the wave elevation. Thus, the full coupling over the
subdomains between the RANS �ow and the free surface is not enforced at one currently
iterative cycle. This is relatively straightforward in its implementation within a �exible frame-
work for modifying and adapting a method due to the complexities of the coupled approach
[15]. One of the dynamic free-surface boundary conditions, for example, is applied as the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:407–430
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Dirichlet boundary condition for the pressure. A high quality of grid generation relied on the
updated wave height can be ensured.
Due to the combined e�ects of Rn and Fn, a problem related to the numerical singularity at

the contact line (that is, at the intersection of the free surface with a hull surface) should be
addressed. It states that the integration of the KFSBC will give rise to a singular solution at
this line due to the no-slip constraints on a hull. It comes from the kinematic incompatibility
by the fact that the physical phenomenon of @h=@t=0 (see Equation (6), where h is the
wave elevation and t is the time) on the hull is not observed during a whole experimental
visualization. To remove the kinematic paradox in mathematics, one approach popular is to
extrapolate the wave elevation in the �rst cell to the hull surface based on the assumption that
the �ow at this cell becomes tangential to the hull surface. Thus, a numerical displacement at
the contact point is asymptotically satis�ed. An alternative is to express the �ux on the free
surface by the enforcement of the mass conservation [16]. Without extrapolation, therefore,
the wave height on the hull surface can be evaluated by averaging the velocity on the face
of the control volume surrounding a cell of the wave height.
Since meshes within the boundary layer are su�ciently re�ned for accurate calculation

of skin friction resistance, such feedback can induce undesirable numerical instability in the
free-surface computations due to high wave numbers. This causes oscillations of the waves at
the grid scale. Moreover, lack of numerical dissipation for higher-order schemes results in an
unstable numerical system [5]. Therefore, the two approaches above mentioned appear to be
insu�cient to overcome such problems associated with oscillations. Additionally, numerical
simulations have to identify a characteristic of modern ship forms, such as the breaking waves
occurred at a bulbous bow or due to a sonar dome, and more complex �ow patterns o� a
transom stern. For the transom �ow, this is a challenging problem, especially for a partially
wetted transom [17].
Numerous attempts have been made to deal with these situations, some of which are served

the function of numerical dissipation as follows: to add a high-order arti�cial dissipation term
into the KFSBC [11, 18]; to locally introduce the lower order dissipation [1]; and to �lter
the free surface [4]. These can enhance numerical stability through avoiding the overturning
waves and/or eliminating spurious oscillations. Interestingly, one approach [5, 19] is to give
a �nite thickness � (where � is constant for all time) for approximation of the width of the
interface [19] or the contact line [5]. The former can be applied to resolve a discontinuous
jump of the density � when passing through the interface, especially for large density ratios;
the latter is used for interpolated region of the wave elevation in order to cope with a grid
that is highly clustered in the near-wall spacing. For transom stern ships concerned, the so-
called dry-transom model could be implemented [20–22]. The relevant work can be found in
References [23–25].
In this paper, the FINFLO-RANS solver will be applied to numerical simulation of three-

dimensional turbulent free-surface �ows around modern transom stern ships. This is an uncou-
pled approach. A cell-centred �nite-volume multigrid scheme is implemented for the solution
of the three-dimensional RANS equations with the arti�cial compressibility. A free surface
is tracked using a moving mesh. In addition, an approach of solution of the free surface
is explored and incorporated into this solver, in which the non-linear free-surface boundary
conditions are discretized on the basis of a cell-centred �nite-volume method with the ENO
type and a model for approximating the near-wall free surface is introduced. This helps to
maintain stabilization of the free surface and provides one possibility for improvement of our
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Figure 1. A reference co-ordinate system around a ship.

technique competence [26]. Moreover, two classes of the dynamic free-surface boundary con-
ditions are compared. The steady-state computations are performed with two selected transom
types: a dry or a partially wetted transom. Finally, the convergence performance, the grid
dependence and the e�ect of turbulence models on the waves will be investigated by means
of two turbulence models, Chien’s low Reynolds number k–� model and Baldwin–Lomax’s
model. Three examples are presented in this paper. The �rst one involves the KRISO container
ship (KCS) model; the second one a US Navy combatant, DTMB 5415 model; and the last
one a tanker model from the shipyard, Kvaerner Masa-Yards, Finland. Methodology including
the mathematical models, the initial and the boundary conditions and the numerical solution
is brie�y described in Section 2; and then the computational conditions and the results in the
steady-state as well as discussions are given for these three cases in Sections 3 and 4; �nally
some concluding remarks are made in Section 5.

2. METHODOLOGY

2.1. Mathematical models

On the Cartesian co-ordinate system of a right hand (x; y; z), the three-dimensional RANS
equations can be written in the compact form, where the origin O is �xed at the intersection
of the bow with the still free surface, x is positive in the aft direction, y is positive towards
the port and the z-direction is positive upwards (see Figure 1). Namely

@U
@t
+

@(F − Fv)
@x

+
@(G −Gv)
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+

@(H −Hv)
@z

=Q (1)

where the variable U =(�; �u; �v; �w)T. The inviscid �uxes (F;G;H), the viscous �uxes
(Fv; Gv; Hv) and the source term (Q) are expressed as a usual tradition [27], respectively.
� is the density of the �uid, and the mean-velocity components in the x-, y- and z-directions
are denoted by (u; v; w). To evaluate the turbulent viscous coe�cient �t , Chien’s low Reynolds
number k–� turbulence model [28] is implemented. It reads as
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Table I. Empirical coe�cients in the k–� model.

c1 c2 �k �� c�

1.44 1:92(1− 0:22e−Re2t =36) 1.0 1.3 0:09(1− e−0:0115y
+
)

with G1 and G2

G1 =P − ��− 2� k
d2

G2 = c1
�
k
P − c2

��2

k
− 2� �

d2
e−y+=2

where k and � are the turbulent kinetic energy and its dissipation of turbulence, respectively.
P is the production of turbulent kinetic energy de�ned as

P=
{
�t

(
@ui

@xj
+

@uj
@xi

− 2
3
�ij

@uk

@xk

)
− 2
3
�k�ij

}
@ui

@xj
(3)

according to tensor notation (i; j=1; 2; 3). �ij is the Kronecker’s symbol and �=�� (� is the
kinematic viscosity of 1:01× 10−6). Additionally, it is enforced as P= min(P; 20��) so that
an unphysical phenomena is avoided [29]. Owing to a strong interaction of the �ow with the
turbulent quantities, the pseudo-linear form is introduced [30]. With the normal distance from
the wall d, y+ is de�ned as

y+ =d
{
� | ∇×V|

�

}1=2
w

(4)

where the subscript (w) denotes over the wall surface, and V= ui + vj + wk. Finally, �t is
evaluated by

�t = c�
�k2

�
(5)

With this model, the solution is allowed to extend to a wall instead of the use of a wall
function [31]. It is performed with the damping function that describes reduction of turbulence
according to a turbulent Reynolds number, Ret =�k2=��. Empirical coe�cients employed in
this model are given in Table I.

2.2. Initial and boundary conditions

The computational domain consists of six planes that apply the boundary conditions: the inlet,
the outlet, the hull surface, the centreline boundary, the external boundary and the free surface.
Since it is an initial–boundary value problem, the initial and boundary conditions are speci�ed
as follows.
For the initial conditions, a free-stream pressure, a uniform �ow and a zero wave height

are given. A constant distribution of the turbulent quantities is speci�ed.
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For the boundary conditions, no-slip conditions and k=�t = 0 are imposed on the wetted
part of the hull surface, while the pressure on this surface is extrapolated by the Neumann
condition. At the inlet, a uniform �ow is speci�ed and the constant distribution of the turbulent
quantities is given. At the outlet, all variables are extrapolated with a zero-gradient approach.
On the centreline boundary and the external boundary, the mirror conditions for all variables
are employed. k and � on the free surface are set by the mirror condition. In this paper, the
focus involves mainly the solution of the non-linear free-surface boundary conditions.

2.3. Free-surface boundary conditions

The boundary conditions on the free surface are given with one kinematic and three dynamic
conditions in the following way.

2.3.1. The kinematic free-surface boundary condition (KFSBC). Within the Cartesian co-
ordinate system, the KFSBC is formulated with the following two-dimensional (2D) hyperbolic
wave equation:

@h
@t
+ u

@h
@x
+ v

@h
@y
=w (6)

where h(x; y; t) is the wave height with respect to the undisturbed free surface, and (u; v; w)
are the Cartesian velocity on a free surface.
On the free surface, two co-ordinate systems may be chosen. One is for the body-�tted co-

ordinate system, in which Equation (6) has to be transformed. Consequently, a �nite di�erence
(FD) approach is easy to implement. This is the hybrid Cartesian=curvilinear approach for
the bulk RANS �ow and the free surface, respectively. It has been successfully applied to
our viscous free-surface calculations [2, 22, 32]. Therefore, an outline with additional features
associated with the application of the Cartesian co-ordinate system is given using a cell-centred
�nite-volume (FV) method. This is desirable, since the discretization is compatible with the
current procedure of solution of the RANS equations.
A cell-centred FV approach with the ENO scheme: Using the Gauss theorem, a 2D wave

equation (6) can be written as

@
@t

∫
V
h dV +

∫
S
(nxu+ nyv)h dS=

∫
V
w dV (7)

where V is the volume of a cell and S is the corresponding area of the cell face. nx and ny
are the components outwards normal to the face in the x- and y-directions, respectively. With
the mid-point rule approximation, the integration for each cell yields

@h
@t
+
1
V
{(Uh)e − (Uh)w + (Uh)n − (Uh)s}=w (8)

where the subscripts (e,s,w,n) denote the notation at the corresponding face (see Figure 2).
For example, Ue = (Sxu+Syv)e at the east (e) face. Sx and Sy are the components of the area
vector. These are calculated with the spatial co-ordinates (x; y), respectively,

Sx= Snx=yne − yse and Sy= Sny=− (xne − xse) (9)
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Figure 2. A usual notation in a control volume.

In general, the values of the solution variables on the face are obtained with a linear inter-
polation technique. In this case, ue and ve at the east face are estimated as averages of the
neighbouring node values:

ue =
1
2
(uP + uE) and ve =

1
2
(vP + vE) (10)

For the wave height at the face, a second-order essential non-oscillation (ENO) scheme [19]
is chosen. This achieves a second-order accuracy for the convective �uxes by introducing
more upwind points.
Using the ENO approach, for example, the left and right states hLi+1=2; j and hRi+1=2; j at the e

face are given by

hLi+1=2; j= hi; j +
1
2
m(�i+1=2; j ;�i−1=2; j); hRi+1=2; j= hi+1; j − 1

2
m(�i+2=3; j ;�i+1=2; j) (11)

where �i+1=2; j= hi+1; j − hi; j and the similar expressions in Equation (11) are easy to evaluate
with index substitution. The function m(a; b) is de�ned as

m(a; b)=

{
a if |a|6|b|
b otherwise

(12)

Dependent on the sign of Ue, we choose

hi+1=2; j=

{
hRi+1=2; j if Ue60

hLi+1=2; j otherwise
(13)

hi−1=2; j at the face (i − 1
2 ; j) is constructed in an identical fashion.

The second-order explicit Adams–Bashforth formulation is implemented for the time inte-
gration once the �uxes at four faces are obtained.

hn+1 = hn +�t
(
3
2
fn − 1

2
fn−1

)
(14)

where the superscripts (n − 1; n; n + 1) indicate the previous, current and next time
level, respectively, �t is the local time step, and the source term (f) is written as f=
w − 1=V∑4

i=1(uS
x + vSy)h. During the free-surface calculation, surface particles on the free
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surface are enforced when moving in the vertical direction. This requires a relatively small
time step in order to ensure the accuracy of the computation.

2.3.2. The dynamic boundary conditions. The dynamic boundary conditions represent the
continuity of the stress on a free surface. For a turbulent �ow, the stress tensor �ij is written
as

�ij= − p�ij + �
(
@ui

@xj
+

@uj
@xi

)
− �u′iu′j (15)

where �u′iu′j is the Reynolds stress. With the eddy viscosity approximation, Equation (15) can
be reduced to

�ij= − p�ij +
1

Re�

(
@ui

@xj
+

@uj
@xi

)
(16)

where Re� is the e�ective Reynolds number (1=Re� = 1=Rn+�t), �t is the dimensionless turbu-
lent kinetic viscous coe�cient, and p is the total pressure de�ned as p=  − 2

3k−z=F2n , where
 is the so-called piezometric pressure. Rn=U0L=� and Fn=U0=

√
gL; g is the acceleration of

gravity.
Since ni�ijnj; ni�ijt1j and ni�ijt2j are one local normal component and two tangential compo-

nents of the surface forces at a free surface, respectively, the normal and tangential dynamic
free-surface conditions may be derived through balancing these force components. t1i and t2i
are the tangential vectors in the (x; z)- and (y; z)-planes, respectively. ni is the ith compo-
nents of the normal vector on a free surface, which can be expressed in terms of the wave
height (h):

n=(nx; ny; nz)=
(−hx;−hy; 1)
(h2x + h2y + 1)1=2

(17)

The Reynolds stress free-surface boundary conditions (RSFSBC): (1) Zero e�ective shear
stress. Surface tension could be dropped due to a very high Rn. The tangential stress at the free
surface should be zero without a wind. Thus, two tangential dynamic free-surface conditions
are written as

ni	i1 = 0 and ni	i2 = 0 (18)

with

	ij=
1

Re�

(
@ui

@xj
+

@uj
@xi

)
(19)

Using the relationships of Equations (17) and (19), and setting (x1; x2; x3)= (x; y; z) and
(u1; u2; u3)= (u; v; w), these can be reduced to

@u
@z
=−@w

@x
+ 2

@h
@x

@u
@x
+

@h
@y

(
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@y
+

@v
@x

)
(20)

@v
@z
=−@w

@y
+

@h
@x

(
@u
@y
+

@v
@x

)
+ 2

@h
@y

@v
@y

(21)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:407–430



TURBULENT FREE-SURFACE FLOWS 415

(2) Normal dynamic free-surface condition. Assuming negligible surface tension again, the
condition that jumps in the normal direction leads to

ni�i3 = 0 (22)

Substituting Equations (16) and (17) into Equation (22), it can be rewritten as

 =
h
F2n
+

1
Re�

{
2
@w
@z

− @h
@x

(
@u
@z
+

@w
@x

)
− @h

@y

(
@v
@z
+

@w
@y

)}
(23)

Generally, the value of 2
3 k is too small. As a result, it has been ignored in our computations.

With Equations (20)–(23), the pressure ( ) and the components (u; v) of the velocities on
the free surface are evaluated. The continuity equation is introduced for the determination of
the component w of the velocity:

@w
@z
=−@u

@x
− @v

@y
(24)

We call Equations (20)–(24) as the Reynolds stress free-surface boundary conditions
(RSFSBC) due to consideration of viscosity on the free-surface boundary conditions. These
are the Neumann boundary conditions for the velocities on the free surface. The correspond-
ing derivatives in these equations are approximated with a central di�erence scheme. At node
P(i; j) (see Figure 2), for example the term of the left-hand side in Equation (24) may be
written as follows using a cell-centred �nite-volume (FV) method.(

@w
@z

)
i; j; k

=
1
V

6∑
i=1
(nzS)w=

1
V

6∑
i=1

Szw (25)

where Sz is the component of the area vector in the z-direction. The sum is taken over six
faces of a hexahedral cell with the help of the ghost cell. In this way, the derivative of the
velocities with respect to the z-direction is expressed as

V
(
@’
@z

)
i; j; k

= (Sz’)top − (Sz’)bottom + (Sz’)right − (Sz’)left

+ (Sz’)front − (Sz’)back (26)

where the subscripts (top, bottom, right, left, front, back) indicate the notation for the cor-
responding faces and ’=(u; v; w). The �rst two terms are located at the centre of the ghost
cell adjacent to the free surface and interior cell of the �ow, respectively. The others are over
the face of a cell on the free surface, which will be used as part of the source terms. Note
that all the values at the faces on the free surface are determined with a linear interpolation
at the both sides of the corresponding node. But, for the velocity at the centre of the ghost
grid, an one-side extrapolation along the free-surface cell and the �rst cell inside the �ow is
implemented.
The inviscid free-surface boundary conditions (IFSBC): If the free-surface boundary layer

is neglected and gradients of the velocity are assumed to be zero, thus, this leads to the
inviscid dynamic boundary conditions that have been widely applied in the literature [4, 5, 22]
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Figure 3. Comparison of the surface-wave pro�les between the RSFSBC and the inviscid free-surface
boundary conditions (IFSBC). Top: the KCS model (Fn=0:26 and Rn=14× 106; grid with
161× 161× 65; using Baldwin–Lomax’s model). Bottom: the DTMB 5415 model (Fn=0:28 and

Rn=12:8× 106; grid with 191× 161× 33; using the k–� model).

due to its simplicity. In this way, three components of the Cartesian velocities are extrapolated
with gradients of zero-normal velocity from the interior of the �ow by

@u
@n
=

@v
@n
=

@w
@n
=0 (27)

and the pressure  is determined from

 =
h
F2n

(28)

Equations (27) and (28) are named as the IFSBCs. Generally, both the viscous and inviscid
conditions can be applied for determination of the velocities and the pressure on the free
surface. Two examples are given for the wave pro�les along the hull surface with these two
boundary conditions: the KCS model and the DTMB 5415 model (see Figure 3). By com-
parison with the IFSBC, the RSFSBC (the Reynolds-stress free-surface boundary conditions)
can give the accurate prediction. Although the computations with the RSFSBC are somewhat
complex due to the strong coupling of the free surface with a turbulent �ow, its use helps
to capture well wake dynamics, and appreciable errors introduced through approximating the
RSFSBC may be avoided [33]. Furthermore, the prominent feature of the free surface like
the vortex can be generated [34–36].
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2.4. Solution of the bulk �ow and the free surface

With a collocated grid arrangement, all the solution variables are located at the centre of a cell.
An uncoupled approach is employed, where all the boundary conditions are given explicitly.
In the course of the iterative procedure, the Roe’s approach [37] with the MUSCL type and
a central-di�erence scheme are separately implemented for the evolution of the inviscid and
viscous �uxes. The solution vectors are updated by the DDADI -factorization with the local
time step. The convergence rate is improved by the V -cycle of the multigrid method. Once
the solutions for the bulk RANS �ow are given [27], the spatial derivative on the free surface
is evaluated with the ENO scheme. The wave elevation is renewed with the second-order
explicit Adams-Bashforth scheme. A new volumetric grid is generated based on the updated
wave height [38]. This procedure is repeated at each iterative cycle until the steady state is
attained. The numerical scheme in detail is provided in [22].

2.5. A model of treatment of the near-wall free surface

As mentioned before, the integration of the KFSBC at the so-called contact line will involve
the singular solution. For a turbulent �ow, extrapolation of the wave elevation at the �rst cell
to a hull surface does not work well due to oscillations of the waves induced by a high aspect
ratio within the boundary layer. In our model, we choose the near-wall narrow strip rather
than the width of a single cell. It is kept as a constant for entire time, which is similar to the
approach proposed by Wilson et al. [5] and Sussman and Osher [19]. The free surface on
this strip is assumed to be continuous and smooth. Therefore, one possibility is to extrapolate
linearly the near-wall free surface without the solution of Equation (6). A linear least-square
�t scheme may be used for this purpose. The problems related to oscillations of the wave
systems and the numerical singularity could be avoided. Furthermore, the local �ltering that
covers this strip is required in order to prevent spurious noise of the waves and keep the
width of the strip as small as possible (an order of magnitude is about y=L≈ 10−4 for all
test cases). Our computations demonstrate that this approach can maintain stabilization of the
free surface and achieve good surface wave pro�les. This is because in our previous work
[26], we have to use a rather large strip for interpolation of the wave elevation near the hull
surface due to strong oscillations of the waves in this area; therefore, a bow wave along the
hull surface is not captured well.
A transom itself causes the singularity of a �ow. Additionally, a �ow o� the transom is

always complex due to an unsteady turbulence in the wake. These may induce oscillations
of the free surface. To prevent numerical instability, the dry-transom model [22] was applied
for treatment of the free surface in the �nite region close to a transom. It can work perfectly
once a transom is dry at the beginning of the computation. Therefore, we will use this model
in the contain ship (the KCS model) case. In this way, the wave height at the transom pro�le
is set equal to its depth without an interpolation procedure due to the enforcement of the
detachment of a �ow at the transom corner. Unfortunately, it will fail to work once a transom
is immersed in a �ow at rest. In our present work, we have developed a new model and hope
that it can work e�ectively in case one does not know a priori whether a transom is dry or
wetted. It will be tested in the cases of the combatant (the DTMB 5415 model) and tanker
with a partially wetted transom. In this model, the surface-wave height is evaluated with
extrapolation, and the transom at the �nal state may expose completely or immerse partially.
We call this one as a general-transom model due to no limit for a �ow and an initial state
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Table II. Computational conditions and grid for three test cases.

The KCS model The DTMB 5415 model The tanker model

Fn 0.26 0.28 0.15
Rn 14× 106 12:8× 106 8:727× 106
Coarsest mesh 41× 41× 17 49× 41× 9 35× 29× 13
Fine mesh 81× 81× 33 97× 81× 17 69× 57× 25
Finest mesh 161× 161× 65 193× 161× 33 137× 113× 49

of geometry. As expected, it may replace the dry-transom model in the near future, although
our dry-transom model did well in some cases. More details of the model for the near-wall
free-surface treatment can be seen in Reference [39].

3. COMPUTATIONAL CONDITIONS AND GRIDS FOR THREE TEST CASES

Two benchmark test cases [40] are two classes of typical modern surface ships. One is
the KCS model of the KRISO container ship (Korea). Another is the DTMB 5415 model
of a US Navy combatant (USA). They are slender hull forms equipped with a bulbous
bow/a sonar dome and a transom stern. Additionally, a modern full hull form tanker model
from the Kvaerner Masa-Yards, Finland, is also included in this study. The computational
conditions (see Table II) correspond with the measurements from Instituto Nazionale per
Studi ed Esperienze di Architettura Navale (INSEAN), Italy, Korea Research Institute for
Ships and Ocean Engineering (KRISO), Korea, and the shipyard, the Kvaerner Masa-Yards,
Finland. The DTMB 5415 model is free to trim and sink but the tanker model and the KCS
models are �xed. Since the e�ect of a free surface is thought to be relatively small at a low
speed for the tanker model, we still use the IFSBC for determination of the pressure and the
velocity on the free surface instead of the RSFSBC, which will be used in the KCS model
and the DTMB 5415 model cases.
Three grid levels with a grid re�nement ratio (r) of 2 (that is, r=2) are applied for the

computations. This is a doubled mesh in each direction. The total number at the �nest mesh
is about 1 million. The distribution of the grid points in the x-, y- and z-directions is given
by Table II, such as (I × J ×K)= (161× 161× 65) for the KCS model. The steady-state
solution on the coarse grid is used as an initial guess for the �ne solution, which leads to the
low CPU time (each case approximates 4 or 5 days at the �nest mesh). The computational
domain is about −36x=L66, 06y=L63 and −36z=L6hmax (the calculated maximum wave
height). A single O–O topology grid is employed (see Figure 4). With this grid topology,
both the general- and dry-transom models can be used, where the dry-transom model was
used for the KCS model, and the general-transom model was used for the DTMB 5415 model
and the tanker model.
One-half of the hull is considered for the computations since the hulls are symmetric. All

calculations were carried out on a Silicon Graphics Origin2000 provided by the Center for
Scienti�c Computing (CSC), Finland. In the entire text, all variables are made dimensionless
with the ship length L, the free-stream velocity U0 and the density �.
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Figure 4. A single O–O structured mesh.

4. CALCULATED RESULTS FOR THREE TEST CASES

Validation procedures will be demonstrated with three test cases: the KCS model, the DTMB
5415 model and the tanker model, using the k–� model and Baldwin–Lomax’s model [41],
after the convergence performances and the grid re�nement studies are investigated.

4.1. Convergence history

Iterative convergence in this case is assessed by examining the L2 norm of the residuals (Res)
for the momentum (U;V;W ) in the x-, y- and z-directions, and the pressure (P) at the �nest
mesh, respectively,

Res’=
[

N∑
i=1
(’n

i; j; k − ’n−1
i; j; k )

2=N 2
]1=2

where the superscripts (n; n − 1) denote the di�erent time level, N is the total number of a
cell and ’ represents (U;V;W; P).
We draw the curves of the L2 norm of the residuals against iterative cycles (see Figure 5).

The residuals for (U;V;W ) display a faster convergence rate than that for P, as shown in
Figure 5. Furthermore, all residuals at any grid point come down and they lie between 10−4

and 10−5 for P or below 10−5 for (U;V;W ) at the �nal state, respectively. This implies that
it may be su�cient to achieve an approximately divergence-free solution for a given level of
convergence. Two turbulence models, Chien’s k–� model and Baldwin–Lomax’s model, are
used for the computations. For the DTMB 5415 model and the tanker model, the k–� model
is used. Baldwin–Lomax’s turbulence model is used for the KCS model. This model has been
successfully applied to our previous work [22], including investigation of the convergence
performances on three consecutive grids with r=2 [21].
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Figure 5. Convergence histories of the L2 norm of the residuals (U; V;W; P) at the �nest
mesh. Top: the KCS model (Fn=0:26 and Rn=14× 106; grid with 161× 161× 65; using
Baidwin–Lomax’s model). Middle: the DTMB 5415 model (Fn=0:28 and Rn=12:8× 106;
grid with 193× 161× 33; using the k–� model). Bottom: the tanker model (Fn=0:15

and Rn=8:727× 106; grid with 137× 113× 49; using the k–� model).

4.2. Grid re�nement study

The grid re�nement studies are investigated on three di�erent grids (r=2, see Table II). The
averaged y+ values at the �rst grid from the coarsest to the �nest are 2.4, 1.2 and 0.6 for
the KCS model, 6.0, 3.0 and 1.5 for the DTMB 5415 model, and 0.8, 0.4 and 0.2 for the
tanker model, respectively. The results are presented in terms of the wave pro�les and the
wave contours. According to a usual tradition, we de�ne x=L=−0:5 and 0.5 as the location
of the bow and the transom stern in all the corresponding �gures, respectively.
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Figure 6. Surface-wave pro�les at three grid levels. Top: the KCS model (Fn=0:26 and Rn=14× 106;
using Baldwin–Lomax’s model). Middle: the DTMB 5415 model (Fn=0:28 and Rn=12:8× 106; using
the k–� model). Bottom: the tanker model (Fn=0:15 and Rn=8:727× 106; using the k–� model).

4.2.1. Wave pro�les. Figure 6 illustrates the surface-wave pro�les compared on three di�erent
grids for these three test cases, respectively. The di�erence between the middle and the �ne
meshes is relatively small. On the coarsest grid, the wave systems cannot be detected well,
as shown in Figure 6. It is observed that the essential very generous details may be captured
with the �ne mesh. Moreover, as the grid is re�ned systematically, the results can be closer to
the experimental data. Obviously, the maximum discrepancy between two �ne meshes occurs
at the �rst peak o� the transom stern for the KCS model and the �rst trough for the DTMB
5415 model and the tanker model.
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Figure 7. Longitudinal wavecuts (y=L=0:1509) at three grid levels, the KCS model
(Fn=0:26 and Rn=14× 106). Using Baldwin–Lomax’s model.
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Figure 8. Free-surface mesh and the wave contours at three grid levels, the KCS
model (Fn=0:26 and Rn=14× 106). Solid lines for crests; dashed lines for trough;

levels: 0.0002. Using Baldwin–Lomax’s model.

According to the longitudinal wavecuts, we further analyse the grid re�nement e�ects.
Figure 7, for example, exhibits the results at y=L=0:1509 for the KCS model. The gap
between two �ne meshes is still small. By comparison with the measurements, both amplitude
and phase between x=L=−0:2 and 0.3 are not very well predicted, especially in the wake
(0:75¡x=L61:0), where the waves are rapidly damping (see Figure 7). On the other hand,
the current �nest grid does not seem to help. Some reasons may be interpreted as unsteady
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Figure 9. Free-surface mesh and wave contours at three grid levels, the DTMB 5415 model (Fn=0:28
and Rn=12:8× 106). Solid lines for crests; dashed lines for trough; levels: 0.0002. Using the k–� model.

complicated wake �ows. Thus, more grid points are required for accurate prediction of the
solution in this area.
Overall, the results at the �nest mesh can be compared with the experimental data. The

in�uences of the grid density on the wave pro�les are sensitive with the current three grid
levels for all test cases. But, the two �ne meshes can describe the wave elevation, especially
at the �nest mesh. This suggests at least two re�ned grid levels are required in order to test
asymptotic grid convergence. Probably, a �ne mesh should contain at minimum approximate
105 nodes on the basis of our computations, and most are distributed along the x- and y-
directions dependent on physical phenomena on the free surface. Furthermore, the bow wave

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:407–430



424 T. LI

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1 1.5 2

y/
L

x/L

69x57x25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 -0.5 0 0.5 1 1.5 2

y/
L

x/L

69x57x25

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1 1.5 2

y/
L

x/L

137x113x49 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 -0.5 0 0.5 1 1.5 2

y/
L

x/L

137x113x49

Figure 10. Free-surface mesh and wave contours at two �ne levels, the tanker model (Fn=0:15 and
Rn=8:727× 106). Solid lines for crests; dashed lines for trough; levels: 0.0002. Using the k–� model.

is reproduced for the KCS model and the tanker model, while this peak is underestimated
and the �rst trough becomes too deep for the DTMB 5415 model.

4.2.2. Wave contours. The wave contours at the corresponding grid levels are shown in
Figures 8–10 for three test cases. There is a relatively large di�erence at the present grid
size, especially in the region close to the transom (see Figures 9 and 10). In general, a
lot of nodes have to be located in this area to capture the waves. As expected, the ampli-
tudes of the waves at the crest, the shoulder and the trough show closer agreement with
the experimental data as the grid is re�ned systematically, such as see Figure 13 for the
measurements from the KRISO. Furthermore, the detailed features of the wave systems
are illustrated well at the �nest mesh. Nevertheless, in the remote wake, the damping of
the far-�eld waves is obvious due to the e�ects of the grid size, where the grid density on the
free surface is insu�cient (see Figures 8–10). Further investigation is required to clarify the
issue.
We also give a perspective view of the free-surface waves (see Figure 11). This provides

a straightforward observation for the wave elevation in the region of interest.

4.3. E�ects of turbulence models on waves

We studied the in�uence of two turbulence models, the k–� model and Baldwin–Lomax’s
model, on the wave systems. An example is given for the KCS model. Other two cases can
be seen in our �nal report [39]. It is found that the overall tendency of the wave systems
is very similar for these two turbulence models. There is a certain e�ect on the waves, as
shown in Figures 12 and 13.
First, for the surface-wave pro�les (see the top of Figure 12), the shoulder wave is predicted

well, especially with Baldwin–Lomax’s model, where it lies behind the bow peak (x=L=−0:5).
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Figure 11. Perspective view of the wave stationary at the �nest mesh. Top: the KCS
model (Fn=0:26 and Rn=14× 106). Middle: the DTMB 5415 model (Fn=0:28 and

Rn=12:8× 106). Bottom: the tanker model (Fn=0:15 and Rn=8:727× 106).

Secondly, the �rst and second crests can be observed. The magnitude and the phases are
almost the same as observed in the measurements. Unfortunately, there is a large depar-
ture from the stern wave (x=L=0:5). Since the �ow adheres to the transom surface at the
steady-state as observed during the experiment, the assumption of enforcing a �ow to detach
at the transom corner may overestimate this one. Interestingly, the peak behind the transom
(0:56x=L61:2) can be reproduced, especially for Baldwin–Lomax’s model, as shown in Fig-
ure 12, while the results with k–� look more promising as compared to those with Baldwin–
Lomax model. Overall, our results con�rm that the implementation of the dry-transom model
does not seem to yield results with more loss of accuracy than the general-transom model.
As a result, it may be used as one of the tools for the treatment of the transom �ows.
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lines for crests; dashed lines for trough; levels: 0.0002.

Additionally, the computations with the k–� model improves the wave contours as compared
to the results with Baldwin–Lomax’s model, as shown in Figures 8 and 13. Nevertheless, the
discrepancy between them is relatively small.

4.4. Wake at the propeller disk

Figure 14 displays the velocity vectors (v; w) and the axial-velocity (u) contours in the pro-
peller plane (x=L=0:4825) for the KCS model and (x=L=0:435) for the DTMB 5415 model,
respectively. The measurements are from the KRISO experimental �uid dynamic (EFD) data
and the INSEAN. By comparison with the measurements, the results look �ne for both cases.
As expected, the thick boundary layer is captured at this plane, such as u=U0 = 0:9 for the
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KCS model and 0.8 for the DTMB 5415 model. In general, the gross features of the �ow
disturbance observed during the experiment can be reproduced. Note that a vortex at the core
of the propeller disk is not created for the KCS model. The reason may be due to the fact
that the dummy hub was not considered in the computations, but it is attached during the
experiment for this case.

5. CONCLUSIONS

We have presented our calculated results for three types of typical modern ships in mod-
elling the ship-generated waves using the FINFLO-RANS solver. Validation studies have
been demonstrated with three modern vessels: a container ship (the KCS model), a US navy
combatant (the DTMB 5415 model) and a tanker. The results are compared with the mea-
surements in terms of the wave pro�les, wave pattern and turbulent �ow with two turbulence
models, Chien’s low Reynolds number k–� model and Baldwin–Lomax’s model. Additionally,
it is found that two turbulence models employed can give almost the same tendency for the
wave patterns and the di�erence between them is small. With three di�erent grids (r=2),
the convergence performances and the grid re�nement study have been investigated. Two �ne
meshes give the nice results. As the grid is re�ned systematically, the results agree with the
experimental data.
Also, this paper outlines a procedure of numerical solution of the free surface using a cell-

centred FV method with the ENO type, including the model for approximation of the free
surface in the region close to the wall. One advantage is that it can maintain stabilization of
the free surface and achieve a good result. Furthermore, a comparison between the viscous
and inviscid dynamic free-surface boundary conditions has been made. Some improvement on
the waves can be achieved with the viscous boundary conditions on the free surface. Overall,
the method can yield detailed �ow information on ship design.
In the near future, we will simulate the breaking waves based on a good idea proposed by

Alessandrini [14], in which an arti�cial di�usion (adding a damping pressure to the normal
dynamic free-surface condition, for example) is introduced so that the breaking waves are
circumvented through absorbing energy of the waves. Of course, it is possible to implement
the level set approach or the VOF method or both for this purpose. A parallel multiblock
approach is being developed in order to reduce the CPU time. Furthermore, a local grid
re�nement approach could be applied for improvement of the solution of the far-�eld waves
in the wake.
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